The realization space is
  [1   0   1   0   1    0    -2      x2          -2*x1          x2                    x2]
  [0   1   1   0   0    1    -2    2*x1   -4*x1 + 2*x2   2*x1 - x2   x1*x2 + 2*x1 - x2^2]
  [0   0   0   1   1   -1   -x2   x1*x2         -x1*x2       x1*x2                  x2^2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal with 2 generators
avoiding the zero loci of the polynomials
RingElem[x1 - x2, x1^2*x2 + 2*x1^2 - x1*x2^2 - 3*x1*x2 + 2*x2^2, x1 - x2 + 1, x2, x1^2*x2 + 2*x1^2 - x1*x2^2 - 3*x1*x2 + 2*x2^2 - x2, x1, 2*x1^2*x2 + 4*x1^2 - 3*x1*x2^2 - 6*x1*x2 + x2^3 + 3*x2^2, x1*x2 + 2*x1 - x2^2, x1*x2 + 2*x1 - x2^2 - x2, x2 + 2, x1*x2 + 2*x1 - x2, 2*x1 - x2, x1*x2^2 - 4*x1 - x2^3 + 2*x2, x2 - 1, 2*x1^2*x2 + 4*x1^2 - 2*x1*x2^2 - 2*x1*x2 + x2^2, 2*x1^2*x2 + 4*x1^2 - 2*x1*x2^2 - 4*x1*x2 + 3*x2^2 - 2*x2, x2 - 2, x1 - 1, 2, 4*x1 + x2^2 - 4*x2, 2*x1*x2 + 4*x1 - x2^2 - 4*x2, x1*x2 + 2*x1 - 2*x2, 2*x1^2*x2 + 4*x1^2 - 2*x1*x2^2 - 4*x1*x2 + x2^2, 2*x1*x2 + 4*x1 - x2^2]